
Adaptive Performance-Constrained In Situ
Visualization of Atmospheric Simulations
Matthieu Dorier∗, Robert Sisneros†, Leonardo Bautista Gomez∗, Tom Peterka∗, Leigh Orf‡,

Lokman Rahmani§, Gabriel Antoniu¶, and Luc Bougé§
∗Argonne National Laboratory, Lemont, IL, USA, {mdorier,leobago,tpeterka}@anl.gov

†NCSA, UIUC, Urbana-Champaign, IL, USA, sisneros@illinois.edu
‡University of Wisconsin - Madison, Madison, WI, USA, leigh.orf@ssec.wisc.edu
§ENS Rennes, IRISA, Rennes, France {lokman.rahmani,luc.bouge}@irisa.fr

¶Inria, Rennes Bertagne Atlantique Research Centre, Rennes, France, gabriel.antoniu@inria.fr

Abstract—While many parallel visualization tools now provide
in situ visualization capabilities, the trend has been to feed such
tools with what previously was large amounts of unprocessed
output data and let them render everything at the highest possible
resolution. This leads to an increased run time of simulations that
still have to complete within a fixed-length job allocation. In this
paper, we tackle the challenge of enabling in situ visualization
under performance constraints. Our approach shuffles data
across processes according to its content and filters out part of it
in order to feed a visualization pipeline with only a reorganized
subset of the data produced by the simulation. Our framework
monitors its own performance and adapts dynamically to achieve
the best possible visual fidelity within predefined performance
constraints. Experiments on the Blue Waters supercomputer
with the CM1 simulation show that our approach enables a 5×
speedup with respect to the initial visualization pipeline, and is
able to meet performance constraints.

I. INTRODUCTION

Today’s petascale supercomputers enable the simulation
of physical phenomena with unprecedented accuracy. Large
numerical simulations typically run for days on hundreds of
thousands of cores, generating petabytes of data that has to
be stored for offline processing. But storage systems are not
scaling at the same rate as is computation. Consequently, they
become a bottleneck in the workflow that goes from running
a simulation to actually retrieving scientific results from it.
Trying to avoid this bottleneck led to in situ visualization:
running the visualization along with the simulation by sharing
its computational and memory resources and bypassing the
storage system completely. Several frameworks have been
proposed to enable in situ visualization. VisIt’s libsim in-
terface [1] and ParaView Catalyst (previously called “co-
processing library”) [2] are two examples. Middleware such as
Damaris [3] and ADIOS [4] have been developed to reduce the
necessary code changes in simulations and provide additional
data-processing features.

While in situ visualization solves the problem of storage
bottleneck, the additional processing time imposed by in
situ visualization can be prohibitively high and increase the
run time and the performance variability of the simulation.
Approaches such as Damaris [3] that hide the cost of in situ
visualization in dedicated cores are required to skip some
iterations of data in order to keep up with the rate at which
the simulation produces them.

Yet, not all generated data is relevant to understanding and
following the simulated physical phenomena. For example,

atmospheric scientists running storm simulations are interested
mainly in areas of high data variability, potentially indicating
the presence of a forming tornado. The physical phenomenon
of interest (e.g., the tornado) can be localized in a relatively
large domain. The rest of the data in the domain corresponds to
regions of the atmosphere where state variables (wind speed,
temperature, etc.) present little variation. This spacial locality
of the region of interest also produces load imbalance across
processes when attempting to visualize it.

Based on these observations, we propose a new in situ
visualization pipeline that aims to both improve and control
the performance of in situ visualization. This pipeline starts by
detecting regions of high data variability using a set of either
generic or user-provided metrics. It then filters out blocks
of data that do not carry much information. Additionally,
our pipeline redistributes blocks of data across processes in
order to achieve better load balance. Our pipeline monitors
its performance and dynamically adapts the amount of data in
order to meet the simulation’s run-time constraints.

Our proposed method requires domain scientists to provide
appropriate metrics measuring the scientific relevance of data
regions and appropriate in situ visualization scenarios. We
show, however, that a set of generic metrics based on statistics,
information theory, and linear algebra can highlight potentially
interesting regions.

In this work, we demonstrate the benefit of our approach
through experiments on the Blue Waters petascale system [5]
at the National Center for Supercomputing Applications
(NCSA) using the CM1 atmospheric simulation [6], with
ParaView Catalyst [7] as our visualization backend. Compared
with a normal pipeline that does not filter or redistribute
data, we show that our pipeline enables a 4× speedup of
the visualization task on 64 cores and a 5× speedup on 400
cores, even without reducing the amount of data. Moreover
our pipline is able to meet targeted performance constraints
by reducing the amount of data supplied to the visualization
task. Additionally, we evaluate each component of our pipeline
individually.

The rest of this paper is organized as follows. We present
the motivation for our work in Section II, along with the
simulation code and visualization scenarios we consider in
this study. Section III describes our performance-constrained
in situ visualization framework. We then present its evaluation
in Section IV. Section V presents related work. We conclude
and give an overview of future work in Section VI.

(a) Original data (b) Filtered data

(c) Original data (d) Filtered data

Fig. 1: Volume rendering (a,b) and colormap (c,d) of the
reflectivity (dBZ) in the CM1 simulation when feeding the
visualization pipeline with original data (a,c) and with filtered
data (b,d).

II. MOTIVATION

In this section, we first present the use case driving our
study. We then motivate the use of data redistribution and
reduction as a means to achieve performance-constrained in
situ visualization.

A. Use case: the CM1 atmospheric model
Atmospheric simulations are good candidates for in situ

visualization. They are generally compute-bound rather than
memory-bound and can therefore share their resources with
visualization tools [3].

They also simulate their phenomena (e.g., tornadoes) on a
physically large, static domain so that the region of interest
has enough space to evolve without interacting with domain
boundaries. The domain decomposition across processes in
such simulations is regular and independent of each subdo-
main’s content. As a result, many subdomains may contain
uninteresting data.

Our study focuses on the CM1 atmospheric simulation [6].
CM1 is used for atmospheric research and models small-scale
atmospheric phenomena such as thunderstorms and tornadoes.
The simulated domain is a fixed 3D rectilinear grid represent-
ing part of the atmosphere. Each point in this domain is charac-
terized by a set of field variables such as local temperature and
wind speed. CM1 proceeds by iterations, alternating between
a computation phase during which equations are solved and
I/O phases during which data is output to storage and/or fed
to an in situ visualization system.

Figure 1(a) shows the result of in situ volume rendering of
the reflectivity (dBZ) field in CM1. This field corresponds to
the simulated radar reflectivity. It derives from a calculation
based on cloud rain, hail, and snow microphysical variables,
and it can be compared with real weather radar observations.
A 45 dBZ isosurface reveals a feature called the weak echo

region, which is linked to the physical onset of the storm. An
isosurface is a surface separating a region where field’s values
are larger than a given reference value (here 45 dBZ), and a
region where the field’s values are smaller. Such an isosurface
is usually computed using the Marching Cube algorithm [8].

B. Improving performance through data redistribution
Figure 1 also shows that the region of interest is very local-

ized. Thus, some processes have more to render than others.
The overall rendering time is driven by the rendering time
of the process with the highest load. Since each subdomain
handled by a process can be further decomposed into multiple
blocks, redistributing blocks to balance the load may improve
performance.

C. Improving performance through data reduction
In Figures 1(b) and 1(d), each original 55× 55× 38-point

block of data has been reduced to a 2 × 2 × 2-point block,
keeping only corner values, before being fed to the visual-
ization pipeline. While 50 seconds were required to produce
Figure 1(a) on 400 cores of the Blue Waters supercomputer,
only 1 second was required to produce Figure 1(b). Even
though the loss of visual quality is evident in Figure 1(b), we
confirmed with atmospheric scientists that such results can still
be useful for tracking the evolution of the phenomena being
studied.

D. Adapting to performance constraints
In our previous work [3], we showed that in situ visu-

alization can largely increase the run time of a simulation
when done in a time-partitioning manner (i.e., the simulation
stops periodically to produce images). We also showed that in
some situations the high cost of running in situ visualization
algorithms in dedicated cores while the simulation keeps
running forces the dedicated cores to skip some iterations and
to reduce the frequency at which images are produced.

In this work, we address this problem by proposing
performance-constrained in situ visualization. The main idea is
that different blocks of data have different scientific value and
that blocks that are not interesting can be filtered out in order
to gain performance. Consequently, the in situ visualization
pipeline will be continuously adapted to achieve the highest
possible fidelity for the end user while staying close to a given
visualization time, in a best-effort manner.

III. PERFORMANCE-CONSTRAINED IN SITU
VISUALIZATION

This section presents our approach to performance-
constrained in situ visualization. We first give an overview
of the approach, then discuss each of its steps: how to give
a score to blocks of data, how to reduce blocks with a low
score, how we redistribute the load, and finally how to adapt
the pipeline to meet performance constraints.

A. Overview of our approach
In the following, we call the full 3D array produced by the

simulation at a given iteration the domain. We call a subarray
of a domain handled by one process a subdomain. We call a
subarray of a subdomain a block. The number of blocks per
subdomain is constant across processes. The size of all blocks
is also constant.

Fig. 2: Overview of our performance-constrained in situ
visualization approach. Crosses represent steps that involve
collective communications. The run time of the full pipeline is
monitored at each iteration and used to control the percentage
of blocks that have to be reduced.

Figure 2 illustrates our approach to performance-constrained
in situ visualization. Given an input data divided into blocks
and distributed across processes, our pipeline consists of six
steps.

1) Blocks of data are scored by using a generic or user-
provided metric evaluating their relevance to either the
scientific phenomenon studied or the visualization algo-
rithm employed.

2) The scores are sorted across processes.
3) A percentage of blocks with the lowest scores is reduced.
4) A load redistribution takes place to redistribute the

blocks in order to better balance the phenomenon of
interest across processes.

5) The blocks are rendered through a visualization pipeline.
6) The run time of the above steps is measured, and the

percentage of blocks to reduce is adapted in order for
the next iteration to be processed in a targeted amount
of time.

The following subsections describe these steps in more
detail.

B. Scoring blocks of data
The first step in our approach consists of evaluating the

potential relevance of each block of data, so that the least
relevant blocks can later be filtered out to improve perfor-
mance. Our main idea is to score how important it is to the
scientific phenomena or to the visualization algorithm. While
no universal metric exists for evaluating the relevance of data,
we found that a set of generic metrics can still give a good
idea of the importance.

In our scenario, atmospheric scientists rely on a combina-
tion of techniques to analyze their data. For example, they
may render isosurfaces at different levels and use other 3D
visualization scenarios, such as streamlines based on wind
vectors, or 2D scenarios, such as the colormap shown in
Figure 1(a). For these visualization scenario, to give accurate
results, we are interested in keeping intact areas of high data
variability. Therefore we investigated several metrics to score
blocks based on their variability.

a) Statistics: The range metric consists of computing the
difference between the minimum and maximum values in a
block of data. The intuition is that a block of data that spans
a large range of values might be more interesting to keep than
another. However, this metric will give a low score to blocks
of data that present high variations but within a small range.
A second metric in this category is the variance of the data
in a block.

b) Interpolation: Interpolation-based metrics consist of
measuring the mean square error between the original data
and a block of data rebuilt from an interpolation of a reduced
set of values (its corners, for example). For 3D blocks, we use
trilinear interpolation. Because many visualization algorithms
use trilinear interpolation for rendering, this metric matches the
error that a visualization algorithm will make when rendering
blocks of data that have been reduced.

c) Entropy: The entropy of a block of data is a way of
measuring the amount of information contained in a block. The
entropy is obtained by building a histogram of the values found
in a block of data, and by computing E = −

∑
pilog2(pi),

where pi represents the probability of a single value in the
block to fall into bin i of the histogram. In order to be
comparable across blocks, the same parameters (range and
number of bins) should be used for the histogram across all
processes. Doing so requires working with a variable that
falls in a known range (this is the case for the reflectivity,
which falls in the range [−60, 80]) and knowing this range
in advance. The number of bins can be more difficult to
tune, however. In our experiments we tried 32, 256, and
1024 bins. While 256 bins seemed more appropriate (better
discrimination among blocks for a good performance), there
is again no rule of thumb to select such a number. We also
considered the local entropy (entropy computed at each point
using a local neighborhood) as a possible metric, but this
metric turned out to consume too much time relative to the
duration of other components of our pipeline. We used the
ITL library [9] to implement entropy-based filters.

d) Bytewise entropy: We implemented a Lightweight
Entropy Analyzer (LEA) to cope with the limitations of the
classical way of computing the entropy. LEA considers each
float (or double) as an array of 4 bytes (resp. 8 bytes). It
then computes independently the entropy of the first byte of
all float values, then the entropy of the second byte, and
so on, returning the sum of these entropies as a score. This
method does not require tuning a histogram; since each byte
can take 256 values, the probability pi of a value i is simply
its frequency of appearance.

e) Compressors: We also evaluated compression algo-
rithms as a means of scoring blocks of data. Our intuition is
that the compression ratio should correlate with the amount of
information contained in a block. Compressors do not require
extra information such as histogram parameters. We used the
FPZIP [10], ZFP [11], and LZ [12] floating-point compressors,
with different tunings for each (such as different levels or
lossiness/precision). FPZIP and ZFP also have knowledge of
the fact that blocks are 3D arrays; thus we can expect them
to take locality into account. Because of space constraints, we
present the results of FPZIP only. The results obtained with
ZFP and LZ are similar.

We do not claim that any of these filters gives an absolute
answer to the question of whether a block of data is interesting,
the notion of interesting being subjective and tied to both
the field of study and the visualization scenario. We provide
this set of filters only as a starting point, and we rely on
interactions with domain scientists to find which filter is the
most appropriate for the phenomenon studied.

While we evaluated 30 filters (or variants of filters) in
our experiments, we show results only for a representative

subset of them: RANGE (range metric), VAR (variance),
ITL (entropy), LEA (bytewise entropy), FPZIP (floating-point
compression), and TRILIN (trilinear interpolation).

C. Sorting and reducing blocks
After each block has been given a score, the sets of pairs

<id, score> are globally sorted by increasing scores (two
blocks with the same score are sorted by id). The resulting
sorted array is broadcast back to all processes so that each
process knows the scores of all blocks including those be-
longing to other processes.

Based on this set, the p percent blocks with the lowest score
are reduced. This reduction step consists simply of keeping
the 8 corners of 3D blocks (4 corners for 2D blocks) and their
coordinates. In our use case, 55 × 55 × 38-point blocks are
reduced to 2 × 2 × 2 points. The percentage p of blocks to
reduce is set to 0 for the first iteration and dynamically adapted
later based on performance constraints.

The reason for reducing blocks this way, rather than keeping
a single point with an average value, for example, is that a
reduced block should still be connected to its neighboring
blocks. Keeping two points along each dimension allows us to
retain the extents of a block. Keeping the values of these points
allows a continuity with neighboring blocks. Visualization
algorithms will also be able to rebuild more points if necessary
using interpolation from these 2×2×2 points. As can be seen
in Figure 1(b), reduced blocks in a region of high variability
come out blurry as a result of such interpolation.

D. Load redistribution (shuffling)
As a result of block reductions, the amount of data can

become imbalanced across processes. Blocks with a high score
(therefore not reduced) are indeed likely to be clustered in a
small region handled by a reduced number of processes. This
imbalance adds up to the imbalance of rendering load, defined
as the time required for a piece of data to be rendered. Even
if none of the blocks are reduced, the locality of the physical
phenomena and the resulting isosurface lead to some processes
having more rendering load than others.

This situation may impair the performance of the final
rendering step. In particular the total run time of the rendering
step is driven by the run time of its slowest process, that is,
the process with the highest load.

In order to gain performance, the blocks must be redis-
tributed across processes. Since process rank 0 already broad-
casts the scores of all blocks to all processes, all processes
have the same full, sorted list of blocks. Upon reading this
list, each process issues a series of nonblocking receives to
get blocks that they need, and a series of nonblocking sends
to send blocks to other processes.

We implement two load redistribution strategies.
• Random Shuffling Each process is given the responsibil-

ity for a random set of blocks (the number of blocks per
process remains constant). The redistribution of blocks is
computed the same way in all processes by making sure
all processes use the same seed. This strategy constitutes
our baseline; it does not take the scores into account, and
it does not attempt to optimize communications.

• Round Robin The blocks, sorted by their score, are
distributed across processes in a round-robin manner.

That is, process 0 takes the block with the highest score;
process 1 the block with the second highest score, and so
on, looping over processes until no more blocks remain to
be distributed. This strategy takes the scores into account
but does not attempt to optimize communications.

Our experiments show that such communications have a
negligible overhead, on the order of 1 second, on the target
platform (Blue Waters) compared with the rendering time, on
the order of tens to hundreds of seconds.

E. Adapting to performance constraints
The last step in our approach consists of dynamically

adapting the number of blocks that are reduced based on pre-
defined performance constraints. In our case the performance
constraint is the maximum run time for the full pipeline to
complete.

To implement this adaptive reduction of data, we assume
that (1) for a given iteration n, the total run time of the pipeline
is a monotonically increasing function fn of the number of
nonreduced blocks and (2) for every iteration n, fn−1 is a
good approximation of fn.

Assumption (1) is intuitive, given that all parts of the
pipeline either do not depend on the number of reduced blocks
(the scoring component and parallel sort) or benefit from the
reduction (load redistribution and rendering).

Assumption (2) may not always be true, especially because
the performance of the rendering pipeline is inherently vari-
able, and because the rendering load varies as the physical
phenomenon evolves (for example, if a cloud gets bigger, it
spans more domains and requires more time to be rendered).
It may happen that although we increase the percentage of
reduced blocks from iteration n−1 to iteration n (which should
lead to a decrease of run time), the rendering time increases as
well because fn−1 was not a good approximation of fn. Our
algorithm takes this case into account by simply increasing
the percentage by 1 instead of decreasing the percentage of
reduced blocks in the hope of decreasing the run time.

Algorithm 1, our solution to the above problem, starts
by assuming that the rendering time t0 when all blocks are
reduced is t0 = 0. The first output of the simulation is not
reduced (p1 = 0), and leads to a time t1. After the first
iteration, we always keep the rendering time and percentages
of the two previous iterations (tn−1, pn−1, tn, pn), and
compute an estimate of the rendering time as a function of
the percentage. This linear approximation allows us to get the
next percentage pn+1 required to reach the target run time.
Lines 2 to 7 prevent our algorithm from being stuck because
it used the same percentage two iterations in a row. The case
of Assumption (2) being broken is handled in line 10. Line
13 makes sure that the resulting value stays within [0, 100].

Note finally that, while not studied hereafter, the maximum
percentage of reduced blocks could easily be bounded by the
user himself.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate all the components of our
pipeline individually and together. After describing the experi-
mental setup, we divide our evaluation into several parts, each
focusing on a single component of the pipeline. The last part
is the overall performance gain.

Algorithm 1 Computes the percentage of blocks to reduce
based on the percentages used for the two previous iterations
(pn−1 and pn) and the observed timings (tn−1 and tn). target
is the required run time of the full pipeline.

1: function ADAPT PERCENT(target, tn−1, pn−1, tn, pn)
2: if pn−1 = pn then . Deal with a vertical slope
3: if tn > target and pn < 100 then return pn + 1
4: end if
5: if tn < target and pn > 0 then return pn − 1
6: end if
7: end if
8: . Compute linear estimation, i.e., we find a and b

such that t = a× p+ b
9: a← tn−tn−1

pn−pn−1

10: b← tn − a× pn
11: if a ≥ 0 then return min(100, pn + 1) . May

happen because of randomness in rendering time.
12: end if
13: p← target−b

a . Estimate next percentage
14: return min(100,max(p,0)) . Make sure p is in

[0,100]
15: end function

A. Description of the experiments

We demonstrate the benefit of our approach through ex-
periments with the CM1 application on NCSA’s Blue Waters
petascale supercomputer [5]. We focus in particular on the
reflectivity field produced by CM1. While the colormap visu-
alization scenario is already fast (on the order of a second to
complete), rendering the isosurface can take several minutes.
We therefore focus on this scenario specifically. The colormap
will, however, be used to show how the scores given by
different metrics map to certain regions of the data.

In our previous work we used Damaris/Viz and VisIt to
enable in situ visualization in CM1. In the present work, we
use ParaView Catalyst instead, since it allows us to define
various batch visualization pipelines through Python scripts.
We use an isosurface algorithm for volume rendering. This
algorithm computes a mesh of the isosurface using a marching
cubes method, then renders this mesh. The rendering time in
one process therefore depends on the number of mesh elements
handled by this process, which itself depends on the content
of the data in this process.

To avoid running CM1’s computational part for every exper-
iment, and because interesting phenomena start to appear only
after a few thousand iterations, we use a dataset already gen-
erated by atmospheric scientists. This dataset consists of 572
iterations of data (starting after approximately 5,000 iterations
of the simulation), each a 2200 × 2200 × 380 array of 32-
bit floating-point values representing the reflectivity on each
point of a 3D rectilinear grid. It was generated from a 3-day
run of CM1 on Blue Waters. We reloaded this dataset using
the Block I/O Library (BIL) [13] into an in situ visualization
kernel of CM1 that feeds it to a Catalyst pipeline.

We use 10 iterations, equally spaced in time, to evalu-
ate our approach, except when evaluating the self-adaptation
mechanism, in which case we use 30 iterations. We run our
experiments on 64 cores (4 nodes) and 400 cores (25 nodes).

 0

 10

 20

 30

 40

 50

 60

 70

 80

LE
A

FPZIP IT
L

R
AN

G
E

VAR

TR
IL

IN

F
ilt

e
r

P
e

rf
o

rm
a

n
c
e

 (
M

B
/s

)

Fig. 3: Throughput of differ-
ent scoring metrics, in MB/s.

TABLE I: Computation time required for different metrics.

Metric Time on 64 cores (sec) Time on 400 cores (sec)
LEA 2.03 0.32

FPZIP 8.85 1.42
ITL 13.30 1.97

RANGE 7.03 1.12
VAR 1.41 0.23

TRILIN 14.30 2.28

In both cases, the data is initially read and distributed across
processes the same way CM1 would have generated it at these
scales.

B. Score metrics: performance and relevance
We compared our block-scoring metrics in several ways.

First, we measured how fast these metrics score blocks.
Figure 3 shows their respective throughput. Table I presents
the corresponding computation time on 64 and 400 cores,
with 16,000 blocks of 55 × 55 × 38 floating-point values.
These times must be put in perspective with the rendering
time. For example, on 64 cores it takes about 160 seconds to
render all the blocks without reducing any of them. Using the
TRILIN function adds 14.3 seconds to this run time, which,
in our opinion, is not acceptable for a function that aims only
at guiding a later selection of blocks. We therefore prefer a
scoring function such as LEA or VAR, which only take 2.03
and 1.41 seconds, respectively.

The second aspect of the metrics that has to be studied is
how they rank blocks compared with one another. Since our
approach consists of selecting a percentage of blocks with the
highest score, two metrics may not select the same blocks.

In Figure 4, each graph compares a pair of metrics. Each
point on a graph represents a block. The abscissa of the
point represents the rank of the block when blocks are sorted
according to the first metric. Its ordinate represents the rank
of the block when blocks are sorted according to the second
metric.

From these figures we can clearly see a set of blocks that
all metrics “agree” are not variable enough to be considered
relevant. The scores of these blocks is the minimum score that
the metrics can give; therefore they are sorted by id rather than
by score, leading to the same order according to all metrics.
For blocks that present more variability, the metrics tend to
disagree on the ordering. This is an expected result because
each metric evaluates a different aspect of variability. Some
relations between metrics can yet be highlighted, such as the
fact that a large entropy with ITL seems to imply a large
variance, while the opposite may not be true, and the fact that
the trilinear interpolation score seems to correlate well with
the variance, which may come from the fact that in both cases

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

N
O
N
E

SH
U
FFLE LE

A

FPZIP IT
L

R
AN

G
E

VAR

TR
IL

IN

R
e

n
d

e
ri
n

g
 T

im
e

 (
s
e

c
)

(a) 64 cores

 0

 10

 20

 30

 40

 50

 60

N
O
N
E

SH
U
FFLE LE

A

FPZIP IT
L

R
AN

G
E

VAR

TR
IL

IN

R
e

n
d

e
ri
n

g
 T

im
e

 (
s
e

c
)

(b) 400 cores

Fig. 6: Run time of the rendering pipeline when none of the
blocks are reduced, but load-redistribution is enabled based
on scores provided by different metrics. NONE represent the
case where the load has not been redistributed, SHUFFLE
corresponds to random shuffling, and all others correspond to
a round-robin distribution according to scores.

a mean square error with respect to a reference value (for the
variance) or function (for trilinear interpolation) is computed.

To guide the user in choosing metrics, we display an image
(such as the colormap presented in Section II) and show
how each block part of the image is scored. This kind of
2D visualization is easy to compute and fast; it can also be
done offline with samples of data from previous runs of the
simulation.

Figure 5 shows score maps, that is, colormaps of the domain
where colors represent scores of blocks, and compares them to
the original reflectivity field. It shows that some metrics such
as VAR or TRILIN give a higher score to regions with larger
overall variability (e.g., contours of the phenomenon) while
other such as ITL or FPZIP also give a high score to blocks
inside the phenomenon itself. Note that the longer blocks on
the borders of the domain are due to the simulation grid, which
is rectilinear. These blocks have the same number of points as
any other.

C. Performance benefit of load redistribution

We then confirmed that redistributing the blocks to divide
the cost of the physical phenomena benefits the rendering
performance. To do so, we ran our pipeline without load
redistribution, with random load redistribution and with load
redistribution in a round-robin fashion according to different
metrics. Figure 6 shows the rendering time in these experi-
ments. The communication time is 1.2 seconds on 64 cores
and 0.6 seconds on 400 cores, both for the random shuffling
strategy and the round-robin policy.

These results show that simply by redistributing the load,
we can achieve a 5× speedup on 400 cores and a 4× speedup
on 64 cores. It also shows that there is no benefit in taking
the scores into account; randomly redistributing blocks already
achieves a good statistical load balancing because of the
relatively small size of the phenomena of interest compared
with the size of the full domain. Section IV-E studies the
interaction of the load redistribution component and the block
reduction component.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 2 4 6 8 10

R
e

n
d

e
ri
n

g
 T

im
e

 (
s
e

c
)

Iteration Number

 0 percent
 80 percent
 90 percent

 98 percent
100 percent

(a) 64 cores

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

R
e

n
d

e
ri
n

g
 T

im
e

 (
s
e

c
)

Iteration Number

 0 percent
 90 percent
 94 percent

 98 percent
100 percent

(b) 400 cores

Fig. 7: Run time of the rendering pipeline for 10 iterations,
with different percentages of blocks being reduced.

D. Performance benefit of block reduction
In the next series of experiments we evaluate how much

performance is gained by reducing a certain percentage of the
blocks, and we show how the run time evolves as a function
of the percentage of blocks being reduced. We used the VAR
metric (other metrics yield similar results) to score blocks of
data.

Figure 7 shows the run time of 10 iterations for different
percentages of blocks being reduced. When none of the blocks
are reduced, the run time is 160 seconds on 64 cores and 50
seconds on 400 cores. When all the blocks are reduced, this
run time goes down to 1 second in both cases. This defines
the margins within which we can adapt the performance by
changing the number of blocks being reduced when load
redistribution is not involved.

This figure also shows that the rendering time is not the
same from one iteration to another. As will be shown later,
this variability will affect our adaptation algorithm.

Figure 8 presents the same results as a function of the
percentage of reduced blocks, with error bars representing
minimum and maximum across the 10 iterations. We observe
that the performance improvement is not proportional to the
percentage of reduced blocks. Instead, a majority of the blocks
need to be reduced before we start observing performance
improvements. The first reason is that the selection of blocks
to be reduced is based on their score, yet blocks with a high
score are not evenly distributed across processes. Hence a few
processes are likely to have a large number of high-scored
blocks and will not see their load being reduced until the
percentage is high enough that we start selecting their blocks
too. The second reason is that with the rendering algorithm
used here (isosurface volume rendering), many blocks are
transparent and therefore take a negligible time to render.

E. Combined reduction and load redistribution
Data reduction has a potential impact on the time to perform

load redistribution. Indeed, since data is reduced before being
redistributed, reducing more blocks means exchanging less
data. Although this redistribution time is negligible compared
with the rendering time, we show in Figure 9 how it evolves
as a function of the number of blocks being reduced. For this
set of experiments we used the LEA metric. As expected, the
communication time decreases as we increase the percentage
of reduced blocks, as a result of a lower amount of data to be
exchanged.

(a) LEA vs FPZIP (b) LEA vs ITL (c) LEA vs RANGE (d) LEA vs VAR (e) LEA vs TRILIN

(f) FPZIP vs ITL (g) FPZIP vs RANGE (h) FPZIP vs VAR (i) FPZIP vs TRILIN (j) ITL vs RANGE

(k) ITL vs VAR (l) ITL vs TRILIN (m) RANGE vs VAR (n) RANGE vs TRILIN (o) VAR vs TRILIN

Fig. 4: Comparison of block orderings produced by various metrics. Each graph compares two metrics. Each point represents
a block. The abscissa of the point represents the rank of the block when the blocks are sorted according to the first metric.
The ordinate of the point is the rank of the block when sorted according to the second metric.

(a) Original dBZ field (b) LEA scoremap (c) FPZIP scoremap (d) ITL scoremap

(e) RANGE scoremap (f) VAR scoremap (g) TRILIN scoremap

Fig. 5: Scoremaps (greyscale colormap of the domain according to different scores – darker regions indicate higher scores).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100

R
e

n
d

e
ri
n

g
 T

im
e

 (
s
e

c
)

Percentage of Reduced Blocks

(a) 64 cores

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

R
e

n
d

e
ri
n

g
 T

im
e

 (
s
e

c
)

Percentage of Reduced Blocks

(b) 400 cores

Fig. 8: Run time of the rendering pipeline (average, minimum,
and maximum across 10 iterations) as a function of the
percentage of blocks being reduced.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 20 40 60 80 100

C
o

m
m

u
n

ic
a

ti
o

n
 T

im
e

 (
s
e

c
)

Percentage of Reduced Blocks

Round Robin
Random Shuffle

(a) 64 cores

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20 40 60 80 100

C
o

m
m

u
n

ic
a

ti
o

n
 T

im
e

 (
s
e

c
)

Percentage of Reduced Blocks

Round Robin
Random Shuffle

(b) 400 cores

Fig. 9: Run time of the redistribution component (average,
minimum, and maximum across 10 iterations) as a function
of the percentage of blocks being reduced.

Load redistribution combined with data reduction have an
effect on the rendering performance. This effect is shown in
Figure 10. It shows that load redistribution not only improves
performance but it also reduces the variability of the rendering
tasks.

Additionally, Figure 10 shows that the round-robin and
random policies lead to the same performance of the rendering
task; that is, a score-guided redistribution achieves a load
balancing equivalent to the statistical load balancing.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100

R
e

n
d

e
ri
n

g
 T

im
e

 (
s
e

c
)

Percentage of Reduced Blocks

No Redistribution
Round Robin

Random Shuffle

(a) 64 cores

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

R
e

n
d

e
ri
n

g
 T

im
e

 (
s
e

c
)

Percentage of Reduced Blocks

No Redistribution
Round Robin

Random Shuffle

(b) 400 cores

Fig. 10: Run time of the rendering component (average, min-
imum and maximum across 10 iterations) as a function of the
percentage of blocks being reduced, when load redistribution
is enabled or disabled.

F. Dynamic adaptation

We first evaluate our dynamic adaptation technique without
the redistribution component. We then add the redistribution
component to show the resulting performance of the entire
pipeline.

1) Adaptation without redistribution: In this set of exper-
iments, we set a target run time of 120, 60, and 20 seconds
per iteration on 64 cores, and 30, 15, and 7 seconds on 400
cores. Figures 11(a) and 11(b) present the resulting run time
for 30 iterations. They show that our approach can successfully
adapt the percentage of reduced blocks in order to reach a
target run time per iteration. Figures 11(c) and 11(d) show
that the percentages have stabilized after a few iterations. The
variability observed in the run time comes from the inherent
variability of the visualization task.

2) Adaptation with redistribution enabled: We evaluate
the full pipeline, including load redistribution, with dynamic
adaptation. Figure 12 presents the resulting run time for 30
iterations. Here the target run time is 25 and 10 seconds per
iteration on 64 cores and 7 and 3 seconds per iteration on 400
cores. We used the same scale for the y axis as in Figure 11
so that Figures 11 and 12 can be compared. These results
show that our pipeline not only improves performance but it
can also meet performance constraints despite the variability
of the rendering task.

3) Feedback from scientists: Informal discussions with
atmospheric scientists indicated that they were particularly
interested in the vortex region at the center of the domain (this
regions is circled in green in Figure 5) When being shown the
scoremaps in Figure 5 for feedback, their interest turned to the
VAR and TRILIN metrics, which gives a high score to this
region while giving a low score to its surrounding.

Additionally, they confirmed that the produced visual results
were satisfactory for their purpose of tracking the evolution of
the phenomena while the simulation runs.

V. RELATED WORK

In the following we present related work in the field of in
situ visualization and in particular techniques that attempt to
adapt the in situ visualization pipelines.

A. Adaptive in situ visualization

More and more efforts are put into designing in situ visu-
alization frameworks that adapt to the content of the data (for
instance, its compressibility) or to the availability of resources
such as local memory.

Zou et al. [14] presented an in situ visualization frame-
work based on EVpath that takes into account the quality
of information (QoI) as well as the quality of service (QoS).
Their QADMS approach applies lossy compression selectively
depending on a tradeoff between QoI (defined as the ratio
between compressed data size and original data size) and
QoS (defined as the end-to-end latency). While they lay the
foundation of data reduction for in situ visualization, our
approach is different in that our data reduction method consists
of removing entire blocks (keeping the corners) rather than
lossy-compressing the full set of points. Since the number
of points in their approach does not change, the rendering
time remains the same, and only the data transfer between

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20 25 30

R
e

n
d

e
ri
n

g
 T

im
e

 (
s
e

c
)

Iteration Number

target = 120 sec
target = 60 sec
target = 20 sec

(a) 64 cores

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30
R

e
n

d
e

ri
n

g
 T

im
e

 (
s
e

c
)

Iteration Number

target = 30 sec
target = 15 sec
target = 7 sec

(b) 400 cores

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

R
e

d
u

c
e

d
 B

lo
c
k
s
 (

%
)

Iteration Number

target = 120 sec
target = 60 sec
target = 20 sec

(c) 64 cores

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

R
e

d
u

c
e

d
 B

lo
c
k
s
 (

%
)

Iteration Number

target = 30 sec
target = 15 sec
target = 7 sec

(d) 400 cores

Fig. 11: Rendering time (a+b) and percentage of blocks
reduced (c+d) on 64 and 400 cores when trying to converge
toward a specified run time. Load redistribution is not activated
here.

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
e

c
)

Iteration Number

target = 10 sec
target = 25 sec

(a) 64 cores

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
e

c
)

Iteration Number

target = 3 sec
target = 7 sec

(b) 400 cores

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

R
e

d
u

c
e

d
 B

lo
c
k
s
 (

%
)

Iteration Number

target = 10 sec
target = 25 sec

(c) 64 cores

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

R
e

d
u

c
e

d
 B

lo
c
k
s
 (

%
)

Iteration Number

target = 3 sec
target = 7 sec

(d) 400 cores

Fig. 12: Full pipeline (including load redistribution) comple-
tion time (a+b) and percentage of blocks reduced (c+d) on 64
and 400 cores when trying to converge toward a specified run
time.

the simulation and a staging area is improved. Our approach
improves both data redistribution and rendering time.

Malakar et al. [15] introduced an in situ visualization
framework in which data is sent from the simulation to a
visualization cluster at a frequency that is dynamically adapted
to resource constraints. This approach tries to maximize the
temporal accuracy (i.e., by maximizing the frequency of in
situ visualization updates) but keeps a fixed spatial resolution.
Our approach proposes to adapt the spatial resolution as well
and to do it selectively on chunks of data considered relevant.

Jin et al. [16] proposed to adapt the in situ visualization
process either by adapting the resolution at which the data
is rendered or by changing the location of the rendering tasks
(using either in situ visualization or in transit visualization). To
adapt the resolution of the data, they used entropy-based down-
sampling. We proposed and evaluated several other metrics,
in particular based on the use of floating-point compressors.
Additionally, we investigated the impact of data redistribution
on such metrics.

Closer to our work is the work by Wang et al. [17],
who proposed finding important data in time-varying datasets
by using information theory metrics and by looking at the
evolution of such metrics across different time steps. Although
their work provides key insights into defining the importance
of a piece of data, their solution is not applied in situ, that is,
in a context where the performance of filtering relevant data
is extremely important to avoid any impact on the running
simulation.

The capabilities for an in situ visualization framework to
select relevant subsets of data to be stored or visualized is
mentioned as one of the design issues for in situ visualization
by Thompson et al. [18].

B. Integration in existing in situ visualization frameworks

While we have used the Catalyst library [2] to demonstrate
our approach, it could be easily leveraged by other in situ
visualization packages such as VisIt [19] through its libsim
library [1].

In the past few years, a number of data management libraries
have been proposed to ease the integration of in situ visual-
ization into existing simulation codes. These libraries, such as
ADIOS [4], offer an interesting opportunity for integrating our
approach in a way that is more decoupled from the simulation
code on one side, and from the visualization side on the other.

Middleware have also been proposed with the same purpose,
but using dedicated resources to run data management tasks.
PreDatA [20] and GLEAN [21] use dedicated nodes (staging
area) to run data processing tasks asynchronously. Damaris [3],
[22] leverages dedicated cores in multicore nodes to achieve
the same goal. The use of dedicated cores for in situ data
processing and analytics can also be found in other works [23],
[24].

These middleware that leverage dedicated resources pose
interesting questions regarding the integration of our approach.
In particular, our pipeline can arguably run some parts at
the simulation side (block reduction), other part during data
transfert to dedicated resources (sorting blocks), and other
parts in dedicated resources (rendering).

VI. CONCLUSION

While in situ visualization enables faster insight into a
running simulation, it can increase the simulation’s run time
and increase its variability. Needed, therefore, are ways to
improve the performance of in situ visualization, as well as to
make its task fit in a given performance budget, even at the
cost of reduced visual accuracy.

In this paper, we have addressed the challenge of im-
proving in situ visualization performance in the context of a
climate simulation. We realized that the strong locality of the
phenomenon of interest limits the performance of a normal
rendering pipeline. Hence, we proposed redistributing blocks
of data and reducing a percentage of them based on their
content. Additionally, we proposed adapting the percentage so
that our pipeline adheres to performance constraints. We have
shown that our pipeline can speed the visualization time by
5× on 400 cores without affecting the visual results, and that
it can effectively meet given performance constraints provided
that data reduction is allowed.

We plan to investigate whether more elaborate redistribution
algorithms are necessary in order to achieve the same results
at larger scale and on platforms with lower network perfor-
mance. We will also investigate multivariate scores and other
visualization scenarios tied to other field variables of CM1 and
other simulations.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Advanced Scientific
Computing Research, under contract number DE-AC02-06CH11357.
This work is also supported by DOE with agreement No. DE-
DC000122495, program manager Lucy Nowell.

REFERENCES

[1] B. Whitlock, J. M. Favre, and J. S. Meredith, “Parallel In Situ Coupling
of Simulation with a Fully Featured Visualization System,” in Euro-
graphics Symposium on Parallel Graphics and Visualization (EGPGV).
Eurographics Association, 2011.

[2] N. Fabian, K. Moreland, D. Thompson, A. Bauer, P. Marion, B. Geveci,
M. Rasquin, and K. Jansen, “The ParaView Coprocessing Library: A
Scalable, General Purpose In Situ Visualization Library,” in LDAV, IEEE
Symposium on Large-Scale Data Analysis and Visualization, 2011.

[3] M. Dorier, R. Sisneros, Roberto, T. Peterka, G. Antoniu, and
B. Semeraro, Dave, “Damaris/Viz: a Nonintrusive, Adaptable and User-
Friendly In Situ Visualization Framework,” in LDAV - IEEE Symposium
on Large-Scale Data Analysis and Visualization, Atlanta, GA, USA,
Oct. 2013. [Online]. Available: http://hal.inria.fr/hal-00859603

[4] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,
“Flexible IO and integration for scientific codes through the adaptable
IO system (ADIOS),” in Proceedings of the 6th international workshop
on Challenges of large applications in distributed environments, ser.
CLADE ’08. New York, NY, USA: ACM, 2008, pp. 15–24. [Online].
Available: http://doi.acm.org/10.1145/1383529.1383533

[5] NCSA, “Blue Waters project,” http://www.ncsa.illinois.edu/BlueWaters/.
[6] G. H. Bryan and J. M. Fritsch, “A Benchmark Simulation for Moist

Nonhydrostatic Numerical Models,” Monthly Weather Review, vol. 130,
no. 12, pp. 2917–2928, 2002.

[7] A. C. Bauer, B. Geveci, and W. Schroeder, “The ParaView Catalyst
Users Guide v2.0. Kitware, Inc.” http://www.paraview.org/files/catalyst/
docs/ParaViewCatalystUsersGuide-v2.pdf, 2015.

[8] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d
surface construction algorithm,” in ACM siggraph computer graphics,
vol. 21, no. 4. ACM, 1987, pp. 163–169.

[9] A. Chaudhuri, T.-Y. Lee, B. Zhou, C. Wang, T. Xu, H.-W. Shen,
T. Peterka, and Y.-J. Chiang, “Scalable Computation of Distributions
from Large Scale Data Sets,” in Proceedings of the 2012 IEEE Large
Data Analysis and Visualization Symposium LDAV’12, Seattle, WA,
2012.

[10] P. Lindstrom and M. Isenburg, “Fast and Efficient Compression of
Floating-Point Data,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 1245–1250, Sept 2006.

[11] P. Lindstrom, “Fixed-Rate Compressed Floating-Point Arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674–2683, Dec 2014.

[12] L. Gomez and F. Cappello, “Improving Floating Point Compression
through Binary Masks,” in IEEE International Conference on Big Data,
Oct. 2013, pp. 326–331.

[13] W. Kendall, J. Huang, T. Peterka, R. Latham, and R. Ross, “Visualization
Viewpoint: Towards a General I/O Layer for Parallel Visualization
Applications,” IEEE Computer Graphics and Applications, vol. 31,
no. 6, 2011.

[14] H. Zou, F. Zheng, M. Wolf, G. Eisenhauer, K. Schwan, H. Abbasi,
Q. Liu, N. Podhorszki, and S. Klasky, “Quality-aware data management
for large scale scientific applications,” in SC Companion: High Perfor-
mance Computing, Networking, Storage and Analysis (SCC), Nov. 2012,
pp. 816–820.

[15] P. Malakar, V. Natarajan, and S. S. Vadhiyar, “An Adaptive Framework
for Simulation and Online Remote Visualization of Critical Climate
Applications in Resource-constrained Environments,” in Proceedings
of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 1–11. [Online]. Available:
http://dx.doi.org/10.1109/SC.2010.10

[16] T. Jin, F. Zhang, Q. Sun, H. Bui, M. Parashar, H. Yu, S. Klasky,
N. Podhorszki, and H. Abbasi, “Using cross-layer adaptations for
dynamic data management in large scale coupled scientific workflows,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’13. New
York, NY, USA: ACM, 2013, pp. 74:1–74:12. [Online]. Available:
http://doi.acm.org/10.1145/2503210.2503301

[17] C. Wang, H. Yu, and K.-L. Ma, “Importance-Driven Time-Varying
Data Visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol. 14, no. 6, pp. 1547–1554, Nov. 2008.

[18] D. Thompson, N. Fabian, K. Moreland, and L. Ice, “Design Issues
for Performing In Situ Analysis of Simulation Data,” Technical Report
SAND2009-2014, Sandia National Laboratories, Tech. Rep., 2009.

[19] LLNL, “VisIt, https://wci.llnl.gov/codes/visit/.”
[20] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S. Klasky,

M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf, “PreDatA -
Preparatory Data Analytics on Peta-Scale Machines,” in IEEE Inter-
national Symposium on Parallel Distributed Processing (IPDPS), April
2010, pp. 1–12.

[21] V. Vishwanath, M. Hereld, V. Morozov, and M. E. Papka, “Topology-
Aware Data Movement and Staging for I/O Acceleration on Blue
Gene/P Supercomputing Systems,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC’11. New York, NY, USA: ACM, 2011, pp. 19:1–19:11.
[Online]. Available: http://doi.acm.org/10.1145/2063384.2063409

[22] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf, “Damaris:
How to Efficiently Leverage Multicore Parallelism to Achieve Scalable,
Jitter-free I/O,” in IEEE International Conference on Cluster Computing
(CLUSTER), Sept. 2012, pp. 155 –163.

[23] M. Li, S. S. Vazhkudai, A. R. Butt, F. Meng, X. Ma, Y. Kim,
C. Engelmann, and G. Shipman, “Functional Partitioning to Optimize
End-to-End Performance on Many-core Architectures,” in Proceedings
of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 1–12. [Online]. Available:
http://dx.doi.org/10.1109/SC.2010.28

[24] F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki, and
H. Abbasi, “Enabling in-situ execution of coupled scientific workflow on
multi-core platform,” Parallel and Distributed Processing Symposium,
International, pp. 1352–1363, 2012.

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory (”Ar-
gonne”). Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and oth-
ers acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government.

